Пятница, 03.05.2024, 02:23Главная | Регистрация | Вход

Приветствие

Здравствуйте, уважаемые посетители сайта!
Для удобной работы вам необходимо зарегистрироваться на нашем проекте. Проект является частью системы uNet, по этому, если вы уже зарегистрировались на любом сайте unet, регистрироваться заново не понадобится - лишь войти под своим логином и паролем.

Посоветовать другу

Мини-чат

500

Oпрос

Светлая или темная эмблема?
Всего ответов: 21

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0
Статьи
Главная » Файлы » Материалы эксперементаторов

Получение кислорода (теория)
14.01.2012, 12:36
Получение
В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:
2KMnO4 → K2MnO4 + MnO2 + O2↑;
используют также реакцию каталитического разложения пероксида водорода Н2О2:
2Н2О2 → 2Н2О + О2↑.
Катализатором является диоксид марганца (MnO2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода).
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:
2KClO3 → 2KCl + 3O2↑.
К лабораторным способам получения кислорода относится метод электролиза водных растворов ще
Кислородная установка - устройство для производства кислорода посредством его отделения от других компонентов воздуха. В основу ее работы положены разные принципы - физическая адсорбция (короткоцикловая (КЦА) и вакуумная короткоцикловая (ВКЦА)), мембранное и криогенное разделение.
Применение
Кислородные установки находят широкое применение в различных технологических процессах практически во всех отраслях промышленности, в медицине и сельском хозяйстве. Это обусловлено сильными окислительными свойствами кислорода, например, способностью поддерживать процесс горения.
Кислородные установки получили очень широкое распространение в процессах металлообработки, сварки, резки и пайки. В химической, нефтехимической промышленности и нефтегазовом комплексе кислород в больших объёмах используется как окислитель в химических реакциях.
Принцип работы
В кислородных установках используется явление селективной гетерогенной адсорбции кислорода из воздуха твердым адсорбентом. Установки отличаются высокой надежностью, простотой и высокими технико-экономическими характеристиками.
Влияние температуры и давления
Методы получения из воздуха газообразного кислорода с помощью технологии адсорбции на сегодняшний день доведены почти до совершенства. Работа современной адсорбционной кислородной установки основана на том, что поглощение газа адсорбентом сильно зависит от температуры и парциального давления компонента газа.
Таким образом, благодаря изменению давления и температуры можно регулировать процессы поглощения газа и регенерации адсорбента.
Химические свойства
Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:


Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).
Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.
 Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

 Некоторые оксиды поглощают кислород:

 По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

 Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

[править]Фториды кислорода
 Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

 Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C.
 Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.
 Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.
Кислород поддерживает процессы дыхания, горения, гниения.
В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон).
Применение
Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.
В металлургии
Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.
Сварка и резка металлов
Кислород в баллонах широко используется для газопламенной резки и сварки металлов.
Ракетное топливо
В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для парыводород-фтор и водород-фторид кислорода).
В медицине
Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, декомпрессионной болезни, профилактики гипоксии в видекислородных коктейлей, кислородных подушек.
В пищевой промышленности
В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948[6], как пропеллент и упаковочный газ.
В химической промышленности
В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, — окисления углеводородов в кислородсодержащие соединения (cпирты, альдегиды, кислоты), аммиака в окислы азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горение.
В сельском хозяйстве
В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.
Категория: Материалы эксперементаторов | Добавил: SeimOne
Просмотров: 2495 | Загрузок: 0 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Linsy и ко.© 2024 |